Tuesday, January 10, 2017

Favorite Maniraptor of 2015 Results


My predictions were on the money, as Yi (deservedly) took this one, followed by Dakotaraptor and then Zhenyuanlong. I liked that a Cenozoic maniraptor (Llallawavis) did fairly well for once. Meanwhile, Boreonykus shows that you can gain a decent number of votes as long as you are purportedly a dromaeosaurid, even if you are known from nothing but scrap.

This year's poll looks to be less predictable, as there was no outstanding new maniraptor superstar last year. My guess is that the crown will go to either the enigmatic Fukuivenator or one of the new oviraptorosaurs.

Monday, January 2, 2017

Review of 2016

Despite being one of my busiest years yet, last year was in some ways a success for this blog, as I blogged more in 2016 than in any previous year since 2010 (the year Raptormaniacs was created). If anything, the frequent travel that I did helped me produce more content for the blog: I went to New York to visit a temporary exhibit on bird origins, to South Dakota to attend field camp, to London for TetZooCon, to Utah for SVP, and to Bristol to study. It was not all just filler on here, however, given that I released the longest (and some might say most bizarre) storyline for the Raptormaniacs comic to date. Well, I enjoyed making it. The flip side of all this is that I largely neglected the Tumblr sideblog, but something had to give. Lastly, April Fools' happened, as usual.

Cover image for the "My Little Raptormaniacs" storyline.

Enough about me, you're more likely here for the new maniraptor discoveries. In January, eggshell previously attributed to Genyornis was reinterpreted as belonging to Progura. Quill pits were reported from an Eocene penguin. The genome of the great tit was sequenced. Carotenoid-based feather coloration was found in pink-headed ducks. Great reed warblers were suggested to sing outside of the breeding season to practice their songs. Forty-spotted pardalotes were found to stimulate manna production in eucalyptus trees for feeding. New studies came out on body mass of dodos, the cranial biomechanics of moa, the kicking strike of secretary birds, vocal learning in zebra finches, and the evolution of bill length in 'amakihi, melanin-based coloration system in birds, and chromosomes in white-throated sparrows. Newly-named maniraptors included the non-ornithothoracine avialan Chongmingia zhengi, the Eocene stem-falcon Antarctoboenus carlinii, the enantiornithine Linyiornis amoena, the Cretaceous euornithines Dingavis longimaxilla (which I find suspiciously similar to Juehuaornis) and "Bellulia" rectusunguis (with its genus preoccupied, it would receive a new name later in the year), and the Himalayan forest thrush (Zoothera salimalii).

Mounted specimen of a pink-headed duck, photographed by "Geni", licensed.

In February, duetting in red-backed fairy wrens was found to deter cuckoldry (among themselves, not among their listeners...). Evidence for a theory of mind in common ravens was presented. A specimen of Hesperornis was found with injuries attributed to a plesiosaur attack. New specimens of Archaeorhynchus and Chambicuculus were described. "Furculae" assigned to Dakotaraptor were reinterpreted as turtle entoplastra. New studies came out on the development of fibular reduction in birds, the endocranial anatomy of dodos, the evolution of sexually dimorphic tail feathers, the feather structure of Humboldt penguins, and sound recognition in European starlings. Newly-named maniraptors included the presbyornithid Wilaru prideauxi, the dromornithid Dromornis murrayi, and a bizarre possible maniraptor of uncertain placement, Fukuivenator paradoxus.

Red-backed fairy wren, photographed by Greg Miles, licensed.

In March, brown skuas were reported to be capable of recognizing individual humans. Compositional syntax was found in the calls of great tits. The bill morphology of New Caledonian crows was shown to facilitate tool use. Vocal learning was discovered in red-backed fairy wren embryos. New studies came out on the evolution of color in island birds, the development of feathered feet in domestic chickens and pigeons, the migratory biology of ruby-throated hummingbirds, the vision of small passerines, the morphology of dodos, the mandibular anatomy of Segnosaurus, the tarsometatarsal anatomy of ostriches, the mechanics of sound production in the wings of Smithornis broadbills, and the phylogenetic position of Sylviornis. Newly-named maniraptors included the Cretaceous euornithines Hesperornis lumgairi and Changzuiornis ahgmi, the Eocene apodiform Cypseloramphus dimidius, and an Eocene bird of uncertain placement, Lapillavis incubarens.

Skeletal reconstruction of Sylviornis, from Worthy et al. (2016).

In April, island birds were found to predictably evolve decreased flying ability. Golden-collared manakins and red-capped manakins were discovered to use superfast forelimb muscle contractions during social displays. Vocal mimicry in female superb lyrebirds was reported. The reproductive biology of the sapayoa was described. A new enantiornithine specimen was found to have fish remains as gut contents. New studies came out on the rates of morphological evolution in Early Cretaceous birds, the effect of diet on avian evolution, the taxonomy of geranoidids from the Willwood Formation, the migration strategies of pied flycatchers, brain activity during flight in European starlings, self-regulation in corvids, dental disparity in paravians prior to the K-Pg, the genetic basis for beak size in Darwin's finches, the history of Australian penguins, the biomechanics of courtship displays in Indian peafowl, the evolution of skull shape in raptorial birds, and the ontogeny of limb kinematics in chukars. Newly-named maniraptors included the oviraptorosaur Apatoraptor pennatus and the plotopterids Klallamornis abyssa and Olympidytes thieli.

Red-capped manakin, photographed by Francesco Veronesi, licensed.

In May, the genetic basis for red coloration in birds was described. Research on the phylogeography of the vermilion flycatcher species complex resulted in the recently-extinct San Cristóbal vermilion flycatcher being declared a distinct species. The bill of southern yellow-billed hornbills was found to function in thermoregulation. Hybridization in geese was reviewed. New studies came out on the phylogeny of geese, the structural mechanics of the feather vane, polymorphism in black sparrowhawks, the pelvic limb musculature of ostriches, the evolution of bone-associated genes in birds, duetting displays in magpie larks, and the shape recognition in African gray parrots.

Diagram showing that the enzyme CYP2J19 converts yellow carotenoids to red carotenoids in birds, from Lopes et al. (2016).

In June, wings of juvenile enantiornithines were found preserved in amber. Sexual dimorphism was found in Dromornis stirtoni. Birds were discovered to have higher neuronal density in their forebrains than mammals. Budgerigars and zebra finches were reported to learn grammatical structure in different ways. New studies came out on cognitive development in kaka, the function of nocturnal song in field sparrows, the genetic bases of beards and muffs in chickens, the vascular anatomy of bird heads, the evolution of communal signaling in birds, the chemistry of Troodon tooth enamel, and the osteology of Bathornis. Newly-named maniraptors included the lithornithid Calciavis grandei. "Bellulia" rectusunguis was given the new genus Bellulornis.

Wing of juvenile enantiornithine preserved in amber, from Xing et al. (2016).

In July, great frigatebirds were found to track atmospheric conditions during transoceanic flights. Feather keratin was suggested to be durable enough to be potentially fossilized. The capacity for flapping-based locomotion in Mesozoic paravians was evaluated. New Caledonian crows were reported to use tools for carrying objects. Relational concept learning was demonstrated in ducklings. New studies came out on the consumption of blister beetles by male great bustards, the preservation of avian fossils, visual pigments in emus, interspecies communication between greater honeyguides and humans, visual guidance of flight in hummingbirds, genomic variation in Darwin's finches, and the evolution of ultraviolet vision, closed-mouth vocalizations, skull morphology, and locomotion in birds. Newly-named avialans included the Pleistocene cuckoos Centropus bairdi and Centropus maximus and the Miocene gypaetine vulture Mioneophron longirostris.

Ducklings imprinted on a set of differently-shaped objects (A) prefer a novel set of differently-shaped objects over a novel set of identically-shaped objects (C), whereas ducklings imprinted on a set of identically-colored objects (B) prefer a novel set of identically-colored objects over a novel set of differently-colored objects (E)... though sometimes mistakes are still made (D), from Martinho and Kacelnik (2016).

In August, tool-bending behavior was found to be common in New Caledonian crows. Great frigatebirds were confirmed to sleep in flight. Barbados bullfinches and Carib grackles were discovered to be capable of passing the string-pulling test. The evolution of avian reproduction was reviewed. Zebra finches were found to sing to their unhatched chicks to prepare them for hot weather. New studies came out on the phylogenetic position of the laughing owl, the timing of the crown-penguin radiation, genomic variation in the yellow-rumped warbler species complex, and the diversification of kiwis and passerines. Birds of Stone by Luis Chiappe and Meng Qingjin was published and my review of it can be found here.

Great frigatebird, photographed by "Aviceda", licensed.

In September, pigeons were found to be able to distinguish words from non-words. They were also found to prefer informative over non-informative options and to ignore misinformed leaders. The development of feathers was reviewed. Tool use was reported in Hawaiian crows. Melanin in feathers was elementally characterized. A hard polytomy was argued to be present at the root of Neoaves. Pellets possibly produced by Eocene owls were described. European blackbirds were discovered to switch abruptly to nocturnal flight during migration. New studies came out on the phylogeny of New World vultures, the function of nasal conchae in turkeys, non-vocal signaling during courtship displays in blue-capped cordon bleus, song complexity in pied butcherbirds, the genetic bases for vision in raptorial birds, the morphology of tracheal and esophageal displacement in birds, the development of the grasping foot in birds, and the dentitions of Hesperornis and Ichthyornis. Newly-named maniraptors included the Eocene stem-roller Septencoracias morsensis, the Dahomey forest robin (Stiphrornis dahomeyensis), the Ghana forest robin (Stiphrornis inexpectatus), and the Rudder's forest robin (Stiphrornis rudderi).

Hawaiian crow using stick as probing tool, from Rutz et al. (2016).

In October, red flight feathers in yellow-shafted flickers was found to be caused by diet rather than by hybridization with red-shafted flickers. A preserved syrinx was reported from a specimen of Vegavis. A bonebed of Avimimus was described at last after having been rumored at conferences for many years. Evidence was presented in favor of treating the hen harrier and northern harrier as distinct species. A parrot fossil was reported from the Miocene of Russia. Common swifts were discovered to spend ten months in the air annually. Migratory life histories were found to explain the extreme size dimorphism in Eudyptes penguin eggs. New studies came out on altruism in azure-winged magpies, the relationships between flight style and avian wing aerodynamics, the timing of the columbiform radiation, the mechanics of plunge diving in sulids, and the evolution of the avian bill as a thermoregulatory organ. Newly-named maniraptors included the Pleistocene owl Bubo ibericus, the Eocene owl Eostrix gulottai, and the Eocene albatross Notoleptos giglii. Avian Evolution by Gerald Mayr was published and my review of it can be found here.

Preserved Vegavis syrinx, from Clarke et al. (2016).

In November, an immature enantiornithine specimen was inferred to have had iridescent feathers. Keratin preservation was reported in the claws of Citipati and the feathers of Eoconfuciusornis (alongside melanosomes in the latter case). A new estimate argued that there are around 18,000 species of extant birds. Goffin's cockatoos were reported to be capable of manufacturing tools out of different materials. The microstructure of an isolated feather from the Fur Formation was analyzed. Interhemispheric transfer of imprinting information was found to be absent in the brains of newly-hatched ducklings. New studies came out on the morphology of Chiappeavis, the evolution of avian breeding strategies, and the timing of the origins of avialans and neornithines. Newly-named maniraptors included the enantiornithine Monoenantiornis sihedangia, the oviraptorosaur Tongtianlong limosus, the Miocene galliforms Eurobambusicola turolicus and Mioryaba magyarica, and the zygodactylids Primozygodactylus longibrachium and Primozygodactylus quintus.

Holotype of Tongtianlong limosus, from Lü et al. (2016).

In December, laser fluorescence was used to study the soft tissues of Confuciusornis. A new juvenile specimen of Sapeornis was described, revealing dentary teeth to have been present in this taxon. "Liornis" and Callornis were reevaluated. Complexities in the evolution of avian flight were discussed. New studies came out on the flight parameters of Mesozoic avialans, the histology of cranial joints in mallards, the comparative morphometrics of Darwin's finches and Hawaiian honeycreepers, the evolution of avian genomes and paleognaths, the morphology of the jugal and quadratojugal in maniraptors, the relationships between body feather structure and habitat, and the influence of wing morphology on dispersal in corvoids. Newly-named maniraptors included the Cretaceous euornithine Tingmiatornis arctica.

Confuciusornis specimen photographed under laser fluorescence, from Falk et al. (2016).

Avian Evolution

For all its faults, 2016 was a good year for new science books, and in the comparatively narrow field of paleornithology a whopping number of two major titles were published. I previously reviewed one, Birds of Stone by Luis Chiappe and Meng Qingjin. As promised, here is my review of the other.


Avian Evolution is authored by Gerald Mayr, and I can think of few who are as qualified to cover the subject. Mayr is an incredibly prolific paleontologist known for his research on both Mesozoic and Cenozoic birds, and though I haven't crunched the numbers, he is singlehandedly responsible for a considerable amount of recent paleornithological literature.

Not even close to the entirety of Mayr's output.

After an introduction to avian osteology and relevant geological settings, the first few chapters of Avian Evolution discuss the Mesozoic evolution and diversity of birds, covering the anatomy of Mesozoic avialans and non-avialan pennaraptors, competing hypotheses on the origins of feathers and avian flight, and evolutionary trends leading to neornithines. Though the overview of the Mesozoic is very welcome, the most valuable part of this tome lies in the chapters following it. Whereas information on Mesozoic birds is no longer as difficult to come by as it used to be, there remain very few comprehensive reviews of the Cenozoic bird fossil record. Barring some lone chapters in larger volumes, previous syntheses of the subject have largely been... idiosyncratic in various ways, not to mention increasingly outdated. Mayr's previous work, Paleogene Fossil Birds, is excellent, but only covers Paleogene birds and is extremely expensive. (Avian Evolution is by no means cheap, but is still far more affordable by comparison.)

Given this dreadful situation, the sections on Cenozoic birds in Avian Evolution fill a much needed gap. These chapters are mostly arranged using a phylogenetic framework, insofar as uncertainties in neornithine phylogenetics allow, but a few clades are discussed alongside one another based on ecological similarities rather than close kinship (e.g.: the major groups of hypercarnivorous diurnal birds—accipitrimorphs, falconiforms, and cariamiforms—are covered in one chapter). The final chapter deviates from this organization and instead focuses on the unusual evolutionary trends and unique morphologies of island birds. The book is not confined to fossil taxa clearly closely related to modern forms, nor to the most charismatic extinct clades such as phorusrhacids and teratornithids, but, being a truly comprehensive review, also includes many enigmatic and obscure fossil groups like the eogruids (cursorial birds possibly closely related to cranes), diomedeoidids (procellariiforms convergently similar to oceanitid storm petrels), plotopterids (flightless diving birds of the northern Pacific), and zygodactylids (abundant stem-passerines with zygodactyl feet). For each avian group, the overall anatomy, known fossil record, biogeographic history, and possible paleoecology are all described, with areas in need of future research noted where necessary. One take-home message of this book is that much more work needs to be done on the phylogeny of Cenozoic fossil birds (which will no doubt be facilitated once we have a more stable topology for the extant representatives).

The book is well illustrated with phylogenetic trees, skeletal diagrams, and comparative photographs of specimens. A number of colored plates in the middle of the book display photographs of various spectacular specimens of fossil birds (and some non-avialan dinosaurs). Unlike Birds of Stone, Avian Evolution is not meant to be a pictorial guide and its images are accordingly much smaller, but they are nonetheless of high quality and helpfully supplement the text. Interestingly, a skeletal restoration of Jeholornis by Scott Hartman lacks a retractable second toe, unlike other (and presumably older) versions of this image that I've seen.

In addition to reviewing the primary literature, Mayr provides some observations that are to my knowledge novel or undescribed.
  • Like Chiappe and Meng in Birds of Stone, Mayr supports the proposed synonymy between Iteravis and Gansus zheni. (Unlike in Birds of Stone, Mayr directly cites Mortimer for this suggestion.)
  • Alamitornis, originally described as a possible close relative of Patagopteryx, is suggested to be a squamate rather than a bird.
  • In light of the reinterpretation of "Genyornis" eggs as belonging to the megapode Progura, Mayr argues that purported castaway Aepyornis eggs found in Australia should be considered possible candidates for true Genyornis eggs.
  • Neogaeornis, a supposed Cretaceous loon, is considered to share more similarities with grebes.
  • Mayr points out that Paracrax, generally assumed to be a member of the carnivorous Cariamiformes, has a hoatzin-like sternum and may have had a large crop and herbivorous diet similar to that bizarre South American bird.
  • An undescribed London Clay stem-owl specimen, currently held in a private collection, has pieces of the skull indicating that it may have had smaller eyes than extant owls.

Particularly controversial will be Mayr's contention that pennaceous feathers most likely evolved for aerodynamic purposes. This main basis for his argument is that if pennaceous feathers were adaptations for non-aerodynamic functions (such as signaling), it would have been evolutionarily easier to widen the entire shaft rather than forming the complex branching structure of actual pennaceous feathers. Given current knowledge of feather growth, I'm not convinced that it would be developmentally easier to grow a flat sheet rather than adding branches to a feather, despite the structural complexity of pennaceous feathers. Additionally, the argument appears to disregard potential non-aerodynamic benefits of producing branching structures, such as more efficient distribution of material compared to equally-sized continuous sheets. Mayr also suggests that ancestral pennaceous feathers used for display purposes would more likely be sexually dimorphic, which appears to ignore the possible role of mutual sexual selection in ornithodirans (including modern birds).

Mayr points out that pennaceous feathers are generally reduced in flightless birds, attributing the presence of fully formed pennaceous feathers in flightless oviraptorosaurs and dromaeosaurids to potential secondary flightlessness. In particular, he levels the possibility of the small, possibly arboreal scansoriopterygids being close relatives of oviraptorosaurs in support of a volant ancestry for the latter. However, given the many aberrant characteristics of scansoriopterygids, not least of which is the fact that at least some of them appear to have flown or glided using membranes rather than feathers as their primary lift-generating surfaces, I am skeptical that they are particularly informative to oviraptorosaur ancestry even if this phylogenetic hypothesis was correct. In any case, the possibly unusual wing structure of the scansoriopterygids likely makes their relevance to the origin of pennaceous feathers questionable. Though I find it plausible that early pennaceous feathers were used in some form of locomotory behavior (such as increasing maneuverability while running and leaping), I would await more conclusive evidence of secondary flightlessness in non-avialan pennaraptors before declaring aerodynamics to be the most likely explanation for the origin of pennaceous feathers.

I defer to Mayr's knowledge of Cenozoic birds, but I did spot a few minor errors or debatable claims in the Mesozoic chapters besides the discussion of pennaceous feather origins.
  • Avimimus is presented as being of uncertain phylogenetic position, even though it is almost invariably recovered as an oviraptorosaur by recent analyses. (Its position within Oviraptorosauria, on the other hand, is less secure.)
  • A specimen of Baptornis is said to preserve coprolites, but this specimen has been given the new name Fumicollis. (Inexplicably, Fumicollis is mentioned elsewhere in the book.)
  • On a taxonomic note, it is said that affirmation of a close relationship between oviraptorosaurs and scansoriopterygids would make oviraptorosaurs paravians, yet all common definitions of Paraves explicitly exclude oviraptorosaurs. Instead, scansoriopterygids would no longer be considered paravians under such circumstances.
  • Caudipteryx is put forth in support of rectrices being restricted to the tail tip in ancestral pygostylians. Though I concur that it's likely that this was the case for Pygostylia, the presence of rectrices down most of the tail's length in the oviraptorosaur Similicaudipteryx, the dromaeosaurid Zhenyuanlong, the troodont Jinfengopteryx, and the basal avialan or troodont Anchiornis suggests that Caudipteryx may not represent the ancestral condition further down the tree.
  • Lastly and almost inevitably, there are a few typos throughout the text. Most glaringly, a strict consensus tree of neornithine relationships incorrectly shows secretary birds as being more closely related to New World vultures than to accipitrids, likely due to mislabeling of the branches.

Despite these lapses, Avian Evolution is impressively up to date and even cites references from early 2016, including the description of Dingavis and the aforementioned reidentification of "Genyornis" eggs. (However, Chiappeavis is strangely not mentioned as an example of an enantiornithine with a fan-shaped arrangement of tail feathers, even though Feitianius, which was described at around the same time, is.)

This book is part of the Topics in Paleobiology series, a collection of volumes intended to serve as reviews of the primary literature on specific topics in paleobiology for researchers and advanced students. This installment succeeds admirably in my view, being sufficiently technical and comprehensive to synthesize its main topic but helpfully defining specialist terms for those unfamiliar with the specific subject. Think The Complete Dinosaur rather than The Dinosauria in terms of style and level of detail. An extensive bibilography is provided for readers who wish to pursue the discussed topics even further. Avian Evolution is an indispensable review and index to the current literature on fossil birds and I would strongly encourage all academics and well-read laypeople interested in the subject to obtain a copy. Its synthesis of Cenozoic paleornithology alone should secure its place in any paleontological library.

I'm certainly glad that Topics in Paleobiology decided to produce such an essential title. I wonder what else- hold on, what!?

Thanks to this review taking up most of my time, I have not been able to complete my annual retrospective of the previous year's events punctually, but it will be coming up next...

Saturday, November 19, 2016

London Wetland Centre

I first visited the London Wetland Centre during TetZooCon, but I didn't have time then to explore the reserve as much as I'd have liked. I have since been able to revisit the Wetland Centre at length. As promised, here is a post about it.

The wetland centre is, in large part, intended to be a reserve for wildlife, and during the fall autumn there are waterbirds in abundance. Here is a great crested grebe.

A tufted duck photobombing.

The wetland centre's bat house.

There are a large number of non-native rose-ringed parakeets at the wetland centre (and reportedly elsewhere in London).

Though the place is teeming with wildlife, much of it can only be seen at great distances. This is the best picture I was able to get of a northern lapwing (with another photobombing tufted duck).

I had better luck photographing their captive waterfowl. The wetland centre almost certainly has more species of captive waterfowl than anywhere else I've been to, many of them rarely seen. Here are (from left to right) some emperor geese, red-breasted geese, barnacle geese, and brant.

More of the above (along with a wild Eurasian moorhen).

A goose nest from one of the above species out in the open. (I don't know which.) I am curious as to whether the captives here are ever threatened by local predators. Peregrine falcons have been sighted at the wetland centre; I wonder whether they're ever in the mood for something exotic. (The geese are likely relatively safe from falcons, but the smaller duck species would have at least the potential to be preyed upon.)

A couple of Bewick's swans (sometimes considered a subspecies of tundra swan).

The species kept here are arranged geographically. Here is a female common goldeneye.

Some of her pondmates, more goldeneyes and smews (and wild moorhens and mallards), representing a Eurasian setting.

The next pond over had canvasbacks, wood ducks, hooded mergansers, and buffleheads, species I am familiar with as a North American birder. (There are also some freeloading black-headed gulls and mallards in this photo.) Many of these species nest in tree cavities; I wonder how that works (as I assume it does) here at the wetland centre considering the ducks presumably have their wings clipped.

A white-headed duck, known from the Middle East, central Asia, and northern Africa.

It repeatedly reared up vertically on the water surface. This looked like some form of display, but I am not familiar with this behavior. Anyone know better?

Next up were the South American marshes, featuring these crested screamers. Despite appearances, they are also waterfowl. They grow daggers on their wings.

Looking much more like a typical duck, a puna teal.

Puna teal again, with ringed teal in the background.

Jumping abruptly to the Arctic, common eiders, with greater scaup and northern pintails (mostly in the background).

Right across from them, we return to the Southern Hemisphere with this Australian magpie goose.

A pair of radjah shelducks.

The London Wetland Centre is involved in captive breeding and reintroduction efforts for endangered waterfowl, such as these Hawaiian Laysan ducks.

The state bird of Hawaii, the nene.

Endangered white-winged ducks from tropical Asia.

Among the few non-waterfowl species housed here are these white-naped cranes. This exhibit is meant to represent an Asian rice paddy.

A falcated duck and a spot-billed duck (foreground).

An unmistakable Baikal teal.

The various bird feeders at the wetland centre were well attended. Here a blue tit and a great tit pay a visit to one, as they frequently do.

A brown rat partaking in scraps from the feeder.

The two-storey observatory is set up to resemble an airport for birds, which is clever.

Tuesday, November 15, 2016

Bristol Museum

It would have been foolish of me to come study here without making a post on the Bristol Museum, considering it is next door to where most of my classes take place. It has a notable collection of Mesozoic marine reptiles. Here is a well-preserved specimen of Temnodontosaurus.

Excalibosaurus, an ichthyosaur with a very elongate rostrum.

A large specimen of Leptonectes.

An outdated presentation of plesiosaur biology.

There are also a few Mesozoic dinosaurs on display, including this Plateosaurus mounted in a rearing posture.

Perhaps surprisingly, the most highly-celebrated dinosaur here is the small sauropodomorph Thecodontosaurus, lauded due to it being a local and historically interesting fossil discovery. Here is a model of the beast by Bob Nicholls.

The reconstructed forelimbs of Thecodontosaurus.

A mostly complete specimen of Scelidosaurus.

A model of Scelidosaurus that has been quote-mined (see the words near its feet).

A more recently extinct dinosaur, an eastern moa.

I quite enjoy the taxidermy displays at this museum, as the specimens are mounted in evocatively lifelike poses. Here is an edible dormouse, as part of a gallery of British wildlife.

An impressively large monkfish, shown luring a small flatfish to its death.

They went to some lengths to get the correct eyes for these stuffed specimens, as is particularly noticeable with this great cormorant.

A hoopoe. I would love to add this species to my life list someday. Based on the blurb though, there's little chance of that happening here.

A diorama of nesting sand martins. (We Americans call them bank swallows.)

There are some more exotic species on display as well, such as this lesser Egyptian jerboa.

A long-tailed pangolin, one of the highly arboreal pangolin species.

I was excited to see this Potamogale, or giant otter shrew, a semi-aquatic tenrec.

An African brush-tailed porcupine.

An ivory-billed woodpecker, almost certainly extinct.

I wouldn't get my hopes up too much.

An eastern ground parrot.

A gray peacock pheasant. Galliforms are crazy.

Speaking of crazy extravagance, an entire display case of birds of paradise.

A regal-looking king vulture.

Tadpoles of the paradoxical frog, which become shorter as they age.

Various hummingbirds.

A resplendent quetzal, the most magnificent of trogons, and a plum-throated cotinga.

Some silky anteaters, the smallest and most adorable anteaters.

A thylacine!

A southern (or double-wattled) cassowary.

A platypus.

The skeleton of a potto, a strange nocturnal primate that uses the elongate neural spines on its neck as weapons.

A model of a dodo. (Not a taxidermied dodo; those, unfortunately, do not exist.)

A scaly-headed Archaeopteryx model. It... could be worse.

A cast of the London Archaeopteryx. I should visit the home institution of the original at some point.

Fragmentary Iguanodon (or more likely Mantellisaurus?) fossils.

Oh, it's that Oligokyphus model.

In addition to being a natural history museum, the Bristol Museum is also an art gallery. However, I will leave it up to the true art connoisseurs to tackle that side of things.